system
This module defines the System class, which encapsulates the components of a deep learning system, including the model, optimizer, datasets, and more. It extends PyTorch Lightning's LightningModule.
System
Bases: LightningModule
System encapsulates the components of a deep learning system, extending PyTorch Lightning's LightningModule.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Module
|
Model. |
required |
optimizer
|
Optimizer | None
|
Optimizer. |
None
|
scheduler
|
LRScheduler | None
|
Learning rate scheduler. |
None
|
criterion
|
Callable | None
|
Criterion (loss) function. |
None
|
metrics
|
dict[str, Metric | list[Metric] | dict[str, Metric]] | None
|
Metrics for train, val, and test. Supports a single/list/dict of |
None
|
dataloaders
|
dict[str, DataLoader]
|
Dataloaders for train, val, test, and predict. |
required |
adapters
|
dict[str, Callable] | None
|
Adapters for batch preparation, criterion argument adaptation, metrics argument adaptation, and logging data adaptation. |
None
|
inferer
|
Callable | None
|
Inferer to use in val/test/predict modes. See MONAI inferers for more details: (https://docs.monai.io/en/stable/inferers.html). |
None
|
Source code in lighter/system.py
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
|
learning_rate
property
writable
Gets the learning rate of the optimizer.
Returns:
Name | Type | Description |
---|---|---|
float |
float
|
The learning rate. |
Raises:
Type | Description |
---|---|
ValueError
|
If there are multiple optimizer parameter groups. |
_calculate_loss(input, target, pred)
Calculates the loss using the criterion if in train or validation mode.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input
|
Any
|
The input data. |
required |
target
|
Any
|
The target data. |
required |
pred
|
Any
|
The model predictions. |
required |
Returns:
Type | Description |
---|---|
Tensor | dict[str, Tensor] | None
|
The calculated loss or None if not in train/val mode. |
Raises:
Type | Description |
---|---|
ValueError
|
If criterion is not specified in train/val mode or if loss dict is missing 'total' key. |
Source code in lighter/system.py
_calculate_metrics(input, target, pred)
Calculates the metrics if not in predict mode.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input
|
Any
|
The input data. |
required |
target
|
Any
|
The target data. |
required |
pred
|
Any
|
The model predictions. |
required |
Returns:
Type | Description |
---|---|
Any | None
|
The calculated metrics or None if in predict mode or no metrics specified. |
Source code in lighter/system.py
_log(name, value, on_step=False, on_epoch=False)
Log a key, value pair. Syncs across distributed nodes if on_epoch
is True.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
key to log. |
required |
value
|
Any
|
value to log. |
required |
on_step
|
bool
|
if True, logs on step. |
False
|
on_epoch
|
bool
|
if True, logs on epoch with sync_dist=True. |
False
|
Source code in lighter/system.py
_log_stats(loss, metrics, batch_idx)
Logs the loss, metrics, and optimizer statistics.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
loss
|
Tensor | dict[str, Tensor]
|
The calculated loss. |
required |
metrics
|
MetricCollection
|
The calculated metrics. |
required |
batch_idx
|
int
|
The index of the batch. |
required |
Source code in lighter/system.py
_on_mode_end()
_on_mode_start(mode)
Sets the current mode at the start of a phase.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mode
|
str | None
|
The mode to set (train, val, test, or predict). |
required |
_prepare_batch(batch)
Prepares the batch data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch
|
dict
|
The input batch dictionary. |
required |
Returns:
Name | Type | Description |
---|---|---|
tuple |
tuple[Any, Any, Any]
|
A tuple containing (input, target, identifier). |
Source code in lighter/system.py
_prepare_output(identifier, input, target, pred, loss, metrics)
Prepares the data to be returned by the step function to callbacks.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
identifier
|
Any
|
The batch identifier. |
required |
input
|
Any
|
The input data. |
required |
target
|
Any
|
The target data. |
required |
pred
|
Any
|
The model predictions. |
required |
loss
|
Tensor | dict[str, Tensor] | None
|
The calculated loss. |
required |
metrics
|
Any | None
|
The calculated metrics. |
required |
Returns:
Name | Type | Description |
---|---|---|
dict |
dict[str, Any]
|
A dictionary containing all the step information. |
Source code in lighter/system.py
_register_metrics()
Registers metrics as modules to ensure they are moved to the appropriate device.
Source code in lighter/system.py
_setup_mode_hooks()
Sets up the training, validation, testing, and prediction hooks based on defined dataloaders.
Source code in lighter/system.py
_step(batch, batch_idx)
Performs a step in the specified mode, processing the batch and calculating loss and metrics.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch
|
dict
|
The batch of data. |
required |
batch_idx
|
int
|
The index of the batch. |
required |
Returns: dict or Any: For predict step, returns prediction only. For other steps, returns dict with loss, metrics, input, target, pred, and identifier. Loss is None for test step, metrics is None if unspecified.
Source code in lighter/system.py
configure_optimizers()
Configures the optimizers and learning rate schedulers.
Returns:
Name | Type | Description |
---|---|---|
dict |
dict
|
A dictionary containing the optimizer and scheduler. |
Raises:
Type | Description |
---|---|
ValueError
|
If optimizer is not specified. |
Source code in lighter/system.py
forward(input)
Forward pass through the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input
|
Any
|
The input data. |
required |
Returns:
Name | Type | Description |
---|---|---|
Any |
Any
|
The model's output. |