
-
Configuration-based
Define, reproduce, and share experiments through config files.
-
Task-agnostic
Classification, segmentation, or self-supervised learning? Lighter can handle it.
-
Minimal
Lighter handles the boilerplate, letting you run experiments with little to no code.
-
Customizable
Add custom code seamlessly, whether it's models, datasets, or any other component.
Lighter vs. PyTorch Lightning
See how training a model on CIFAR-10 differs between Lighter and PyTorch Lightning.
trainer:
_target_: pytorch_lightning.Trainer
max_epochs: 2
system:
_target_: lighter.System
model:
_target_: torchvision.models.resnet18
num_classes: 10
criterion:
_target_: torch.nn.CrossEntropyLoss
optimizer:
_target_: torch.optim.Adam
params: "$@system#model.parameters()"
lr: 0.001
dataloaders:
train:
_target_: torch.utils.data.DataLoader
batch_size: 32
shuffle: True
dataset:
_target_: torchvision.datasets.CIFAR10
download: True
root: .datasets
train: True
transform:
_target_: torchvision.transforms.Compose
transforms:
- _target_: torchvision.transforms.ToTensor
- _target_: torchvision.transforms.Normalize
mean: [0.5, 0.5, 0.5]
std: [0.5, 0.5, 0.5]
from pytorch_lightning import Trainer, LightningModule
from torch.nn import CrossEntropyLoss
from torch.optim import Adam
from torch.utils.data import DataLoader
from torchvision.models import resnet18
from torchvision.datasets import CIFAR10
from torchvision.transforms import ToTensor, Normalize, Compose
class Model(LightningModule):
def __init__(self):
super().__init__()
self.model = resnet18(num_classes=10)
self.criterion = CrossEntropyLoss()
def forward(self, x):
return self.model(x)
def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
loss = self.criterion(y_hat, y)
return loss
def configure_optimizers(self):
return Adam(self.model.parameters(), lr=0.001)
transform = Compose([
ToTensor(),
Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
train_dataset = CIFAR10(
root=".datasets",
train=True,
download=True,
transform=transform
)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
model = Model()
trainer = Trainer(max_epochs=2)
trainer.fit(model, train_loader)
Next Steps
-
Tutorials
Run your first experiments with step-by-step tutorials Start Learning
-
How-To Guides
Learn about Lighter's advanced features with practical guides Learn More
-
Design
Understand Lighter's design principles and architecture Read More
-
Reference
Explore Lighter's classes, functions, and interfaces View API